جستجو


  • 3588


آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده‌های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.

تاریخچه

سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.

جامعه و نمونه

جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY .... در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.

مثال

اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.

طرح آزمایش

در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:

  • مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.

 

  • بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.


باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.

انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.

انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.
از این گفته ها میتوان به اهمیت تحصیل در رشته آمار و نیاز جامعه به فارغ التحصیلان این رشته پی برد.

نكات آمار و احتمال

آمار رشته وسیعی از ریاضی است كه راههای جمع آوری، خلاصه سازی و نتیجه گیری از داده ها را مطالعه می كند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیك و علوم اجتماعی گرفته تا انسان شناسی و همچنین تجارت، حكومت داری و صنعت كاربرد دارد.

آمار رشته وسیعی از ریاضی است كه راههای جمع آوری، خلاصه سازی و نتیجه گیری از داده ها را مطالعه می كند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیك و علوم اجتماعی گرفته تا انسان شناسی و همچنین تجارت، حكومت داری و صنعت كاربرد دارد.
هنگامی كه داده ها جمع آوری شدند چه از طریق یك شیوه نمونه گیری خاص یا به وسیله ثبت پاسخ ها در قبال رفتارها در یك مجموعه آزمایشی ( طرح آزمایشcf  ) یا به وسیله مشاهده مكرر یك فرایند در طی زمان  ( سری های زمانی ) خلاصه های گرافیكی یا عددی را می توان با استفاده از آمار توصیفی به دست آورد.
الگوهای موجه در داده ها سازمان بندی می شوند  تا استنباط در مورد جمعیت های بزرگتر به دست آید كه این كار با استفاده از آمار استنباطی صورت می گیرد و  تصادفی بودن و عدم حتمیت در مشاهدات را شناسایی می كند. این استنباط ها ممكن است به شكل جوابهای بله یا خیر به سؤالات باشد ( آزمون فرض )، مشخصه های عددی را برآورد كند ( تخمین ) ، پیش گویی مشاهدات آتی باشد، توصیف پیوند ها باشد ( همبستگی ) ویا مدل سازی روابط باشد ( رگرسیون ).
 شبكه توصیف شده در بالا گاهی اوقات به عنوان آمار كاربردی اطلاق می شود. در مقابل، آمار ریاضی ( یا ساده تر نظریه آماری ) زیر رشته ای از ریاضی كاربردی است كه از تحلیل و نظریه احتمال برای به كارگیری آمار برروی یك پایه نظری محكم استفاده می كند.
● احتمال
 كلمه احتمال از كلمه لاتین probare  ( به معنی اثبات یا آزمایش كردن ) منشأ می گیرد. در زبان محاوره، احتمال یكی از چندین لغتی است كه برای دانسته یا پیشامدهای غیر حتمی به كار میرود و كم و بیش با لغاتی مثل مشابه، با ریسك، خطرناك، نامطمئن، مشكوك و  بسته به متن قابل معاوضه می باشد. شانس، بخت و شرط بندی از لغات دیگری هستند كه نشان دهنده برداشت های مشابهی هستند. همانگونه كه نظریه مكانیك تعاریف دقیقی از عبارات متداولی مثل كار و نیرو دارد، نظریه احتمال نیز تلاش دارد تا برداشت های احتمال را كمیت سازی كند.
● روش های آماری
۱) مطالعات تجربی و مشاهداتی
ـ هدف كلی برای یك پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه گیری روی تأثیر تغییرات در مقادیر شاخص ها یا متغیر های مستقل روی یك پاسخ یا متغیر وابسته است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد : مطالعات تجربی و مطالعات مشاهداتی . در هر دو نوع از این مطالعات، اثر تغییرات در یك یا چند متغیر مستقل روی رفتار متغیر های وابسته مشاهده می شود. اختلاف بین این دو شیوه درچگونگی مطالعه ای است كه عملاً هدایت می شود.
ـ  یك مطالعه تجربی در بردارنده روش های اندازه گیری سیستم تحت مطالعه است كه سیستم را تغییر می دهد و سپس با استفاده از روش مشابه اندازه گیری های اضافی انجام می دهد تا مشخص سازد كه آیا تغییرات انجام شده، مقادیر شاخص ها را تغییر می دهد یا خیر. در مقابل یك مطالعه مشاهداتی، مداخلات تجربی را در بر نمی گیرد. در عوض داده ها جمع آوری می شوند و روابط بین پیش بینی ها و پاسخ بررسی می شوند.
ـ  یك نمونه از مطالعه تجربی، مطالعات Hawthorne مشهور است كه تلاش كرد تا تغییرات در محیط كار را در كمپانی الكتریك غربی Howthorne  بیازماید. محققان علاقه مند بودند كه آیا افزایش نور می تواند كارایی را در كارگران خط تولید افزایش دهد. محققان ابتدا كارایی را در كارخانه اندازه گیری كردند و سپس میزان نور را در یك قسمت از كارخانه  تغییر دادند تا مشاهده كنند كه آیا تغییر در نور می تواند كارایی را تغییر دهد. به واسطه خطا در اقدامات تجربی، به ویژه فقدان یك گروه كنترل، محققان در حالی كه قادر نبودند آنچه را كه طراحی كرده بودند، انجام دهند توانستند كه محیط را با شیوه Hawthorne  آماده سازند.
ـ  یك نمونه از مطالعه مشاهداتی، مطالعه ایست كه رابطه بین سیگار كشیدن و سرطان ریه را بررسی می كند. این نوع از مطالعه به طور اختصاصی از یك آمار گیری ( پیمایش ) استفاده می كند تا مشاهدات مورد علاقه را جمع آوری كند و سپس تجزیه و تحلیل آماری انجام دهد. در این مورد، محققان مشاهدات افراد سیگاری و غیر سیگاری را جمع آوری می كنند و سپس به تعداد موارد سرطان ریه در هر دو گروه توجه می كنند.
 مراحل پایه برای انجام یك تجربه عبارتند از :
ـ  برنامه ریزی تحقیق شامل تعیین منابع اطلاعاتی، انتخاب موضوع تحقیق و ملاحظات اخلاقی برای تحقیق و روش پیشنهادی.
ـ   طراحی آزمون شامل تمركز روی مدل سیستم و اثر متقابل متغیر های مستقل و وابسته.
ـ  خلاصه سازی از مجموعه مشاهدات برای جامعیت بخشیدن به آنها با حذف جزئیات ( آمار توصیفی ).
ـ   رسیدن به اجماع در مورد آنچه مشاهدات درباره دنیایی كه مشاهده می كنیم به ما می گویند ( استنباط آماری ).
ـ  ثبت و ارائه نتایج مطالعه.
۲)  سطوح اندازه گیری
     چهار نوع یا مقیاس اندازه گیری در آمار استفاده می شود. چــهار نوع یا سطح اندازه گیری ( ترتیبی، اسمی، بازه ای و نسبی ) دارای درجات متفاوتی از سودمندی در تحقیقات آماری دارند. اندازه گیری نسبی در حالی كه هم یك مقدار صفر و فاصله بین اندازه های متفاوت تعریف می شود بیشترین انعطاف پذیری را در بین روش های آماری دارد كه می تواند برای تحلیل داده ها استفاده شود. مقیاس تناوبی با داشتن فواصل معنی دار بین اندازه ها اما بدون داشتن میزان صفر معنی دار ( مثل اندازه گیری IQ  یا اندازه گیری درجه حرارت در مقیاس سلسیوس ) در تحقیقات آماری استفاده می شود.
۳) تكنیك های آماری
     بعضی از آزمون ها و روش های آماری برای مشاهدات تحقیقی آماری شناخته شده عبارتند از :
▪  آزمون تی استیودنت
▪  آزمون توان دوم كای ( خی دو )
▪  آنالیز واریانس ( ANOVA)
▪  آزمون Mann-Whitney U
▪  تحلیل رگرسیون
▪  همبستگی
▪  آزمون كمترین تفاوت معنی دار ( LSD ) فیشر
▪  ضریب همبستگی حاصل ضرب گشتاوری پیرسون
▪  ضریب همبستگی رتبه ای اسپیرمن
نظریه عمومی احتمال به دو اصل وابسته تقسیم می شود :
▪  احتمال كتّره ای : كه نشان دهنده احتمال پیشامدهای آینده است كه به وسیله بعضی از پدیده های فیزیكی تصادفی هدایت می شود. این اصل را می توان به پدیده های فیزیكی كه با اطلاعات كافی اصولاً قابل پیش بینی اند و پدیده هایی كه اساساً قابل پیش بینی نیستند تقسیم بندی كرد.  نمونه هایی از نوع اول شامل پرتاب تاس یا بازی رولت در قمار است و یك مثال از نوع دوم از بین رفتن ماده رادیو اكتیویته است.
▪  احتمال شناختیك : كه نشان دهنده عدم قاطعیت ما در مورد گزاره ای است وقتی كه فرد آگاهی كامل از شرایط اتفاقی ندارد. چنین گزاره هایی ممكن است در مورد پیشامدهای گذشته یا آینده باشد اما نیاز به آن نیست. بعضی مثال ها از احتمال شناختیك آنهایی هستند كه در آن ها یك احتمال به گزاره ای داده می شود كه در آن یك قانون پیشنهادی فیزیك به وقوع پیوسته است و تعیین اینكه چقدر احتمال است كه یك مظنون بر اساس شواهد موجود مرتكب جنایت شده باشد.
 یك سؤال كلی وجود دارد كه آیا احتمال كتره ای به واسطه عدم توانایی ما در پیش بینی دقیق نیروهایی كه ممكن است وقوع مرگ را متأثر سازند به احتمال شناختیك تبدیل شود یا اینكه چنین عدم اطمینانی در ماهیت خود واقعیت وجود دارد به ویژه در پدیده های كوانتومی كه توسط اصل عدم حتمیت هایزنبرگ بیان شده است.هرچند قوانین ریاضی مشابهی صرفنظر از تفسیر انتخاب شده اعمال می شوند، گزینه انتخابی از نظر احتمال مورد استفاده دارای معانی مهمی است كه برای مدل سازی دنیای واقعی به كار می رود.
● فرموله سازی احتمال
 مانند سایر نظریه ها، نظریه احتمال نمادی از اصول احتمال در عبارات رسمی - عباراتی كه جدا از معنیشان كاربرد داشته باشند – است. این عبارات رسمی به واسطه قوانین ریاضی و منطق متأثر می شوند و هر نتیجه ای از آن بر اساس دامنه مسئله تفسیر و برداشت می شود.
  حداقل دو تلاش موفق برای فرموله كردن احتمال انجام شده است كه به نام فرمول بندی كلموگروف و كاكس نامیده می شوند. در فرمول بندی كلموگروف، مجموعه ها به صورت پیشامدها و احتمال خود به عنوان معیاری روی یك سری از مجموعه ها تفسیر می شود. در فرمول بندی كاكس، احتمال به عنوان یك مقدمه اولیه قلمداد می شود ( به این معنی كه بعداً آنالیز نمی شود ) و تأكید بر روی ساخت یك رابطه سازگار از مقادیر احتمال برای گزاره ها می باشد.
در هر دو مورد، قوانین احتمال مشابه هستند به جز در مورد جزئیات عملی :
 ▪ احتمال عددی بین 0 و 1 می باشد.
▪  مجموع احتمال یك پیشامد یا گزاره و مكمل آن برابر 1 است؛ و
▪ احتمال مشترك دو پیشامد یا گزاره برابر با حاصل ضرب احتمال یكی از آن ها و احتمال دومی است به شرطی كه اولی رخ دهد.
● نمایش و تفسیر مقادیر احتمال
      احتمال یك پیشامد عموماً به صورت یك عدد حقیقی بین 0 و 1 نمایش داده می شود. یك پیشامد غیر محتمل دارای یك احتمال دقیقاً 0 و یك پیشامد حتمی دارای یك احتمال 1 است، اما عكس آن همیشه صادق نیست؛ پیشامدهای با احتمال 0 همیشه غیر ممكن نیستند و همچنین پیشامدهای با احتمال 1 همیشه واقعیت نمی پذیرند.
      اغلب احتمالاتی كه عملاً رخ می دهند اعدادی بین 0 و 1 هستند كه نشان دهنده موقعیت پیشامد روی پیوستگی بین غیر ممكن و حتمیت است. هر چه احتمال پیشامد به 1 نزدیكتر باشد، احتمال وقوع آن بیشتر است.
     مثلاً  اگر احتمال وقوع دو پیشامد متقابلاً ناسازگار یكسان تصور شود مثل رو یا پشت در پرتاب سكه، ما می توانیم احتمال هر پیشامد را به صورت 1 از 2 یا %50 یا ½ نمایش دهیم.
    احتمالات مشابهاً به صورت بخت ها هم نمایش داده می شوند كه نسبت احتمال یك پیشامد به احتمال سایر پیشامدهاست. بخت رو شدن در پرتاب سكه (1/2)/(1 - 1/2) است كه مساوی با 1/1 است كه به صورت بخت 1 به 1 نمایش داده می شود و اغلب به صورت 1:1 نوشته می شود.
     بخت های a:b  برای یك پیشامد معادل با احتمال a/(a+b) است. مثلاً بخت 1:1 معادل با احتمال ½ است و نمایش 3:2 معادل با احتمال 3/5 است.
       این سؤال عملاً باقی می ماند كه از احتمال چه انتظاری می توان داشت و چگونه از اعداد و ارقام می توان استفاده كرد. این سؤال همان تفاسیر و برداشت های از احتمال است. افرادی هستند كه مدعیند احتمال را می توان بر هر نوع از گزاره های منطقی غیر حتمی به كار برد كه همان استنباط بیزی است. در مقابل، افرادی هستند كه با این ایده توافق دارند كه احتمال برای پیشامدهای تصادفی همانند برآمد بعضی آزمایش های تصادفی خاص كاربرد دارد؛ به عنوان مثال نمونه گیری از یك جمعیت كه این تفسیر فراوانی گراست. چندین تفسیر دیگر نیز وجود دارد كه فرم اصلاح شده ای از یكی از این دو تفسیر هستند و در حال حاضر از مقبولیت كمتری برخوردار هستند.
● توزیع ها
     توزیع احتمال، تابعی است كه احتمال را به پیشامدها یا گزاره ها تخصیص می دهد. برای هر مجموعه از پیشامدها یا گزاره ها راه های مختلفی برای تخصیص احتمالات وجود دارد به طوری كه شانس یك توزیع یا دیگری معادل با داشتن تصورات متفاوت درباره پیشامدها یا گزاره های مورد سؤال می باشد.
راه های گوناگون معادلی برای نمایش توزیع احتمال وجود دارد. شاید متداولترین آن ها تابع چگالی احتمال باشد؛ به این معنی كه احتمال پیشامد یا گزاره به وسیله انتگرال تابع چگالی به دست می آید. تابع توزیع را می توان همچنین مستقیماً نمایش داد. از یك بعد، تابع توزیع، تابع توزیع تجمعی نامیده می شود. توزیع های احتمال را می توان از طریق گشتاورها یا تابع مشخصه یا به روش های دیگر نیز نمایش داد.
      یك توزیع، توزیع گسسته نامیده می شود اگر آن روی یك مجموعه گسسته شمارش پذیر مثل زیر مجموعه ای از اعداد صحیح تعریف شود. یك توزیع، توزیع پیوسته نامیده می شود اگر دارای یك تابع توزیع پیوسته باشد مثل تابع چند جمله ای یا تابع نمایی. اغلب توزیع های با اهمیت كاربردی از نوع گسسته یا پیوسته هستند اما نمونه هایی از توزیع ها هستند كه شامل هیچكدام از اینها نمی شوند.
     توزیع های مهم گسسته شامل توزیع گسسته یكنواخت، توزیع پواسون،‍ توزیع دو جمله ای، توزیع دو جمله ای منفی و توزیع ماكسول-بولتزمن می باشند.
     توزیع های مهم پیوسته شامل توزیع نرمال، توزیع گاما، توزیع تی استیودنت و توزیع نمایی هستند.
▪  احتمال در ریاضیات
     اصول موضوع احتمال، اساس نظریه احتمال ریاضیات را تشكیل می دهند. محاسبه احتمالات را اغلب می توان با استفاده از تركیبات یا مستقیماً با كاربرد  اصول موضوع تعیین كرد.كاربردهای احتمال حتی بیشتر از آمار است كه معمولاً بر روی ایده توزیع های احتمال و قضیه حد مركزی پایه ریزی شده است.
   برای به دست آوردن یك مفهوم ریاضی از احتمال، پرتاب یك سكه را در نظر بگیرید. بدیهی است كه احتمال آن كه در هر پرتاب سكه رو بیاید %50 است اما این وضعیت به تنهایی فاقد صلابت ریاضی است؛ به این معنی كه ما باید چنین انتظار داشته باشیم كه با پرتاب 10 بار سكه 5 رو و 5 پشت به دست آید اما هیچ تضمینی كه این رخ دهد وجود ندارد. برای مثال این احتمال است كه پشت سر هم 10 بار رو بیاید. پس مفهوم %50 در این متن چیست ؟
     یك راه، استفاده از قانون اعداد بزرگ است. در این مورد، ما تصور می كنیم كه می توانیم هر تعداد پرتاب سكه را انجام دهیم و هر پرتاب سكه مستقل است یعنی كه برآمد هر پرتاب سكه به وسیله پرتاب قبلی تحت تأثیر قرار ندارد. اما ما N مرتبه پرتاب سكه داشته باشیم  و اگر Nн تعداد مرتبه هایی باشد كه رو بیاید پس ما می توانیم برای هر N نسبت  Nн/N را در نظر بگیریم.
     هر قدر N بزرگ و بزرگ تر شود، ما انتظار داریم كه نسبت Nн/N به ½ نزدیك و نزدیك تر شود. این به ما اجازه می دهد كه احتمال Pr(H)

 

 

 رو های سكه را به صورت حد ( ریاضی ) تعریف كنیم، هنگامی كه N به سمت بی نهایت میل میكند : 
 البته در كاربرد عملی، ما نمی توانیم یك سكه را به تعداد بی نهایت پرتاب كنیم بنابراین عملاً این فرمول باید در موقعیت هایی به كار گرفته شود كه در آن ها از قبل یك احتمال اولیه ای برای یك برآمد خاص تعیین كرده ایم ( در این مورد فرض ما این است كه سكه  سالم است ). قانون اعداد بزرگ به ما می گوید كه Pr(H) داده شده و یا به ازای هر عدد كوچـك اختیاری є، عدد n ای وجود دارد كه برای تمام N > nداریم :       

                                                    
  به عبارت دیگر، منظور ما از گفتن « احتمال رو ها ½ است » این است كه اگر ما سكه را به اندازه كافی پرتاب كنیم نهایتاً تعداد رو ها نسبت به تعداد كل پرتاب به ½ نزدیك می شود و سپس به هر اندازه كه تعداد بیشتری پرتاب انجام دهیم ما به ½ نزدیك تر می شویم.
توجه كنید كه یك تعریف كامل، مستلزم نظریه اندازه است كه قادر به حذف مواردی است كه مقادیر بالاتر از محدوده جواب درست نمی دهند یا حتی با نمایش مواردی كه دارای میزان صفر هستند نیز محدود نشده است.
 جنبه اولیه این روش كاربرد احتمال، گاهی در هنگام مواجهه با موقعیت های دنیای واقعی با مشكل روبه رو می شود. برای مثال اگر شما یك سكه را پرتاب كنید و پشت سر هم رو بیاید برای صد مرتبه شما نمی توانید تصمیم بگیرید كه آیا این تنها یك پیشامد تصادفی محض است اگر چه ممكن است ( هرچند بعید ) كه یك سكه سالم این نتیجه را بدهد یا اینكه تصور شما این خواهد بود كه سكه سالم دچار اشكال می باشد.
▪  نكات قابل توجه در محاسبات احتمال
 سختی محاسبات احتمال در تعیین تعداد پیشامدهای ممكن، شمارش رخدادهای هر پیشامد و شمارش تعداد كل پیشامدهای ممكن است. اشكال خاص در به دست آوردن نتایج معنی دار از احتمالات محاسبه شده است. یك معمای سرگرم كننده احتمال به نام مسئله Monty Hall به زیبایی چالش های موجود را نشان می دهد.
▪  كاربرد های نظریه احتمال در زندگی روزمره
     یك تأثیر مهم نظریه احتمال در زندگی روزمره در ارزیابی ریسك پذیری و در تجارت در مورد خرید و فروش اجناس می باشد. حكومت ها به طور خاص روشهای احتمال را در تنظیم جوامع اعمال می كنند كه به عنوان « آنالیز خط مشی » نامیده می شود و غالباً سطح رفاه را با استفاده از متدهایی كه در طبیعت تصادفیند اندازه می گیرند و برنامه هایی را انتخاب می كنند تا اثر احتمال آن ها را روی جمعیت به صورت كلی از نظر آماری ارزیابی كنند. این گفته صحیح نیست كه آمار، خود در مدل سازی درگیر هست زیرا كه ارزیابی های میزان ریسك وابسته به زمان هستند و بنابراین مستلزم مـدل های احتمال قوی تر هستند؛ مثلاً  « احتمال9/11 دیگری »؛ قانون اعداد كوچك در جنین مواردی اعمال می شود و برداشت اثر چنین انتخاب هایی است كه روش های آماری را به صورت یك موضوع سیاسی در می آورد.
 یك مثال خوب اثر احتمال قلمداد شده از مجادلات خاورمیانه بر روی قیمت نفت است كه دارای اثرات متلاطمی از لحظ آماری روی اقتصاد كلی دارد. یك ارزیابی توسط یك واحد تجاری در مورد این كه احتمال وقوع یك جنگ زیاد است یا كم باعث نوسان قیمت ها می شود و سایر تجار را برای انجام كار مشابه تشویق می كند. مطابق با این اصل، احتمالات به طور مستقل ارزیابی نمی شوند و ضرورتاً به طور منطقی برخورد صورت نمی گیرد. نظریه اعتبارات رفتاری، به وجود آمده است تا اثر این تفكرات گروهی را روی قیمت ها، سیاست ها و روی صلح و مجادله توضیح دهد.
 به طور استدلالی می توان گفت كه كشف روش های جدی برای ارزیابی و تركیب ارزیابی های احتمالی دارای اثر شدیدی روی جامعه مدرن داشته است. یك مثال خوب كاربرد نظریه بازی ها كه به طور بنیادین بر پایه احتمال ریخته شده است در مورد جنگ سرد و دكترین انهدام با اطمینان بخشی متقابل است. مشابهاً ممكن است برای اغلب شهروندان دارای اهمیت باشد كه بفهمند چگونه بخت ها و ارزیابی های احتمال صورت می گیرد و چگونه آن ها می توانند در تصمیم گیری ها به ویژه در زمینه دموكراسی دخالت كنند.
كاربرد مهم دیگر نظریه احتمال در زندگی روزمره، اعتبار است. اغلب تولیدات مصرفی مثل اتومبیل و وسایل الكترونیكی در طراحی آن ها از نظریه اعتبار استفاده می شود به نحوی كه احتمال نقص آن ها كاهش یابد. احتمال نقص با مدت ضمانت فرآورده معمولاً ارتباط نزدیك دارد.
● رشته های اختصاصی
    بعضی علوم آن چنان به طور وسیع از آمار كاربردی استفاده می كنند كه برای خود دارای اصطلاحات خاص شده اند. این رشته ها عبارتند از :
▪  زیست آمار
▪  آمار بازرگانی
▪  داده كاوی ( كاربرد آمار و شناسایی الگوها برای كشف علم از داده ها )
▪  آمار اقتصادی ( اقتصاد سنجی )
▪  آمار مهندسی
▪  فیزیك آماری
▪  جمعیت شناسی
▪  آمار روان شناسی
▪ آمار اجتماعی ( برای تمام علوم اجتماعی )
▪  سواد آموزی آماری
▪  آنالیز فرایند و شیمی سنجی ( برای تحلیل داده ها از شیمی تحلیلی و مهندسی شیمی)
▪  مهندسی اعتبار
▪  آمار در ورزش های گوناگون به ویژه بیسبال و كریكت
آمار یك ابزار پایه ای كلیدی در تجارت و تولید است و  برای درك تغییر پذیری سیستم های اندازه گیری، فرایند های كنترل ( مثلاً در كنترل آماری فرایند یا SPC )، برای خلاصه سازی داده ها و برای ساخت تصمیمات بر اساس داده ها مورد استفاده قرار می گیرد. در این نقش ها به آمار یك ابزار كلیدی و شاید تنها ابزار مورد اعتماد باشد.
● نرم افزار
▪  آمار مدرن  برای انجام بعضی از محاسبات خیلی پیچیده و بزرگ به وسیله كامپیوترها استفاده می شود.
▪  تمامی شاخه های آمار با استفاده از محاسبات كامپیوتری انجام پذیر شده اند، به عنوان مثال شبكه های عصبی.
▪  انقلاب كامپیوتری  با یك توجه نو به آمار « آزمایشی » و « تجربی » رویكردهایی برای آینده آمار داشته است  .
 شبیه سازی نسخه ای از بعضی وسایل واقعی یا موقعیت های كاری است. شبیه سازی تلاش دارد تا بعضی جنبه های رفتاری یك سیستم فیزیكی یا انتزاعی را به وسیله رفتار سیستم دیگری نمایش دهد.
 شبیه سازی در بسیاری از متون شامل مدل سازی سیستم های طبیعی و سیستم های انسانی استفاده می شود. برای به دست آوردن بینش به كاركرد این سیستم ها و همچنین در تكنولوژی و مهندسی ایمنی كه هدف، آزمون بعضی سناریوهای عملی در دنیای واقعی است از شبیه سازی استفاده می شود. در شبیه سازی با استفاده از یك شبیه ساز یا وسیله دیگری در یك موقعیت ساختگی می توان اثرات واقعی بعضی شرایط احتمالی را بازسازی كرد.
▪  شبیه سازی فیزیكی و متقابل
ـ  شبیه سازی فیزیكی ، به شبیه سازی اطلاق می شود كه در آن اشیای فیزیكی به جای شی حقیقی جایگزین می شوند و این اجسام فیزیكی اغلب به این خاطر استفاده می شوند كه كوچكتر یا ارزان تر از شی یا سیستم واقعی هستند.
ـ   شبیه سازی متقابل كه شكل خاصی از شبیه سازی فیزیكی است و غالباً به انسان در شبیه سازی های حلقه ای اطلاق می شود یعنی شبیه سازی های فیزیكی كه شامل انسان می شوند مثل مدل استفاده شده در شبیه ساز پرواز.
▪ شبیه سازی در آموزش
  شبیه سازی اغلب در آموزش پرسنل شهری و نظامی استفاده می شود و معمولاً هنگامی رخ می دهد كه استفاده از تجهیزات در دنیای واقعی از لحاظ هزینه كمرشكن یا بسیار خطرناك است تا بتوان به كارآموزان اجازه استفاده از آن ها را داد . در چنین موقعیت هایی كارآموزان وقت خود را با آموزش دروس ارزشمند در یك محیط مجازی « ایمن » می گذرانند. غالباً این اطمینان وجود دارد تا اجازه خطا را به كارآموزان در طی آموزش داد تا ارزیابی سیستم ایمنی– بحران صورت گیرد.
شبیه سازی های آموزشی به طور خاص در یكی از چهار گروه زیر قرار می گیرند :
ـ  شبیه سازی زنده ( جایی كه افراد حقیقی از تجهیزات شبیه سازی شده ( یا آدمك ) در دنیای واقعی استفاده می كنند. )
ـ  شبیه سازی مجازی ( جایی كه افراد حقیقی از تجهیزات شبیه سازی شده در دنیای شبیه سازی شده ( یا محیط مجازی ) استفاده می كنند. )  یا
ـ  شبیه سازی ساختاری ( جایی كه افراد شبیه سازی شده از تجهیزات شبیه سازی شده در یك محیط شبیه سازی شده استفاده می كنند. ) شبیه سازی ساختاری اغلب به عنوان بازی جنگی نامیده می شود  زیرا كه شباهتهایی با بازی های جنگی رومیزی دارد كه در آن ها بازیكنان،  ارتش سربازان و تجهیزات را اطراف یك میز هدایت می كنند .
ـ  شبیه سازی ایفای نقش ( جایی كه افراد حقیقی نقش یك شخصیت با كاری مجازی را بازی می كنند. )
▪ شبیه ساز های پزشكی
شبیه ساز های پزشكی به طور فزاینده ای در حال توسعه و كاربرد هستند تا روشهای درمانی و تشخیص و همچنین اصول پزشكی و تصمیم گیری به پرسنل بهداشتی آموزش داده شو د. طیف شبیه ساز ها برای آموزش روش ها از پایه مثل خونگیری تا جراحی لاپاراسكوپی و مراقبت از بیمار دچار ضربه، وسیع و گسترده است. بسیاری از شبیه ساز های پزشكی دارای یك كامپیوتر می باشند كه به یك ماكت پلاستیكی با آناتومی مشابه واقعی متصل است. در سایر آنها، ترسیم های كامپیوتری، تمام اجزای قابل رؤیت را به دست می دهد و با دستكاری در دستگاه می توان جنبه های شبیه سازی شده كار ر ا تولید كرد. بعضی از این دستگاه ها دارای       شبیه سازهای گرافیكی كامپیوتری برای تصویر برداری هستند مثل اشعه ایكس یا سایر تصاویر پزشكی. بعضی از شبیه سازهای بیمار، دارای یك مانكن انسان نما هستند كه به داروهای تزریق شده واكنش می دهد و می توان آن را برای خلق صحنه های مشابه اورژانس های خطرناك برنامه ریزی كرد. بعضی از شبیه ساز های پزشكی از طریق شبكه اینترنت قابل گسترش می باشند و با استفاده از جستجوگرهای استاندارد شبكه به تغییرات جواب می دهند. در حال حاضر، شبیه سازی ها به موارد غربال گری پایه محدود شده اند به نحوی كه استفاده كنندگان از طریق وسایل امتیازدهی استاندارد با شبیه سازی در ارتباط هستند.
▪ شبیه ساز های پرواز
 یك شبیه ساز پرواز برای آموزش خلبانان روی زمین مورد استفاده قرار می گیرد. در این شبیه سازی، به خلبان اجازه داده می شود تا به هواپیمای شبیه سازی شده اش آسیب برساند بدون آن كه خود دچار آسیب شود. شبیه سازهای پرواز اغلب برای آموزش خلبانان استفاه می شوند تا هواپیما را در موقعیت های بسیار خطرناك مثل زمین نشستن بدون داشتن موتور یا نقص كامل الكتریكی یا هیدرولیكی هدایت كنند. پیشرفته ترین شبیه سازها دارای سیستم بصری با كیفیت بالا و سیستم حركت هیدرولیك هستند. كار با شبیه ساز به طور معمول نسبت به هواپیمای واقعی ارزان تر است.
▪ شبیه سازی و بازی ها
 بسیاری از بازی های ویدئویی نیز شبیه ساز هستند كه به طور ارزان تر آماده سازی شده اند. بعضی اوقات از این ها به عنوان بازیهای شبیه سازی ( sim ) نامبرده می شود. چنین بازیهایی جنبه های گوناگون واقعی را شبیه سازی می كنند از اقتصاد گرفته تا وسایل هوانوردی مثل شبیه سازهای پرواز.
▪ شبیه سازی مهندسی
 شبیه سازی یك مشخصه مهم در سیستم های مهندسی است. به عنوان مثال در مهندسی برق، از خطوط تأخیری استفاده می شود تا تأخیر تشدید شده و شیفت فاز ناشی از خط انتقال واقعی را شبیه سازی كنند. مشابهاً، از بارهای ظاهری می توان برای شبیه سازی مقاومت بدون شبیه سازی تشدید استفاده كرد و از این حالت در مواقعی استفاده می شود كه تشدید ناخواسته باشد. یك شبیه ساز ممكن است تنها چند تا از توابع و  عملكرد های واحد را شبیه سازی كند كه  در مقابل با عملی است كه تقلید نامیده می شود.
  اغلب شبیه سازی های مهندسی مستلزم مدل سازی ریاضی و بررسی های رایانه یار هستند. به هر حال موارد زیادی وجود دارد كه مدل سازی ریاضی قابل اعتماد نمی باشد. شبیه سازی مشكلات مكانیك سیالات اغلب مستلزم شبیه سازی های ریاضی و نیز فیزیكی است. در این موارد، مدل های فیزیكی نیاز به شبیه سازی دینامیك دارند.
▪ شبیه سازی كامپیوتری
 شبیه سازی رایانه ای ، جزو مفیدی برای مدل سازی بسیاری از سیستم های طبیعی در فیزیك، شیمی و زیست شناسی و نیز برای سیستم های انسانی در اقتصاد و علوم اجتماعی ( جامعه شناسی محاسباتی ) و همچنین در مهندسی برای به دست آوردن بینش نسبت به عمل این سیستم ها شده است. یك نمونه خوب از سودمندی استفاده از رایانه ها در شبیه سازی را می توان در حیطه شبیه سازی ترافیك شبكه یافت. در چنین شبیه سازی هایی رفتار مدل هر شبیه سازی را مطابق با مجموعه پارامترهای اولیه منظور شده برای محیط تغییر خواهد داد. شبیه سازی های رایانه ای اغلب به این منظور به كار گرفته می شوند تا انسان از شبیه سازی های حلقه ای در امان باشد.
    به طور سنتی، مدل برداری رسمی سیستم ها از طریق یك مدل ریاضی بوده است به نحوی كه تلاش در جهت یافتن راه حل تحلیلی برای مشكلات بوده است كه پیش بینی رفتار سیستم را با استفاده از یك سری پارامترها و شرایط اولیه ممكن ساخته است. شبیه سازی رایانه ای اغلب به عنوان یك ضمیمه یا جانشین برای سیستم های مدل سازی می باشد كه در آن ها راه حل های تحلیلی بسته ساده ممكن نمی باشد. انواع مختلفی از شبیه سازی رایانه ای وجود دارد كه وجه مشترك همه آن ها در این است كه تلاش می كند تا یك نمونه از سناریوهای نمایانگر برای یك مدل تولید كنند كه در آن امكان محاسبه كامل تمام حالات ممكن مدل كه مشكل یا غیر ممكن بوده وجود داشته باشد.
 به طور رو به افزونی معمول شده است كه نام انواع مختلفی از شبیه سازی شنیده می شود كه به عنوان   « محیط های صناعی » اطلاق می شوند. این عنوان اتخاذ شده است تا تعریف شبیه سازی عملاً به تمام دستاوردهای حاصل از كامپیوتر تعمیم داده شود.
▪ شبیه سازی در علم كامپیوتر
  در برنامه نویسی كامپیوتر، یك شبیه ساز اغلب برای اجرای برنامه ای مورد استفاده قرار می گیرد كه انجام آن برای كامپیوتر با مقداری دشواری همراه است. مثلاً، شبیه سازها معمولاً برای رفع عیب یك ریزبرنامه استفاده می شوند. از آن جایی كه كار كامپیوتر شبیه سازی شده است، تمام اطلاعات در مورد كار كامپیوتر مستقیماً در دسترس برنامه دهنده است و سرعت و اجرای شبیه سازی را می توان تغییر داد.
شبیه سازها همچنین برای تفسیر درخت های عیب یا تست كردن طراحی های منطقی VLSI قبل از ساخت مورد استفاده قرار می گیرند. در علم نظری كامپیوتر، عبارت شبیه سازی نشان دهنده یك رابطه بین سیستم های انتقال وضعیت است كه در مطالعه مفاهیم اجرایی سودمند می باشد.
▪ شبیه سازی در تعلیم و تربیت
 شبیه سازی ها در تعلیم و تربیت گاهی مثل شبیه سازی های آموزشی هستند. آن ها روی وظایف خاص متمركز می شوند. در گذشته از ویدئو برای معلمین و دانش آموزان استفاده می شده تا مشاهده كنند، مسائل را حل كنند و نقش بازی كنند؛ هرچند یك استفاده جدید تر از شبیه سازی ها در تعلیم و تربیت شامل فیلم های انیمیشن است ( ANV ). ANV ها نوعی فیلم ویدئویی كارتون مانند با داستان های تخیلی یا واقعی هستند كه برای آموزش و یادگیری كلاس استفاده می شوند.ANV ها برای ارزیابی آگاهی، مهارت های حل مسئله و نظم بچه ها و معلمین قبل و حین اشتغال كارایی دارند.
شكل دیگری از شبیه سازی در سال های اخیر با اقبال در آموزش تجارت مواجه شده است.  شبیه سازی های تجاری كه یك مدل پویا را به كار می برند، آزمون استراتژی های تجارت را در محیط فاقد خطر مهیا می سازند و محیط مساعدی برای بررسی موردی مباحث ارائه می دهند.

منبع:

آفتاب

آمار را باید علم و عمل استخراج، بسط، و توسعهء دانشهای تجربی انسانی با استفاده از روش‌های گردآوری، تنظیم، پرورش، و تحلیل داده‌های تجربی (حاصل از اندازه گیری و آزمایش) دانست. زمینه‌های محاسباتی و رایانه‌ای جدیدتری همچون یادگیری ماشینی (Machine learning)، و کاوش‌های ماشینی در داده‌ها، (Data mining) در واقع، امتداد و گسترش دانش گسترده و کهن آمار است به عهد محاسبات نو و دوران اعمال شیوه‌های ماشینی در همه‌جا.در صورتی که شاخه‌ای علمی مد نظر نباشد، معنای آن، داده‌هایی به‌شکل ارقام و اعداد واقعی یا تقریبی است که با استفاده از علم آمار می‌توان با آن‌ها رفتار کرد و عملیات ذکر شده در بالا را بر آن‌ها انجام داد. بیشتر مردم با کلمة آمار به مفهومی که برای ثبت و نمایش اطلاعات عددی به کار میرود اشنا هستند . ولی این مفهوم منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتاً با وضعیتهابیی سر و کار دارد که در آنها وقوع یک پیشامد به طور حتمی قابل پیش بینی نیست. اسنتاجهای آماری غالباً غیر حتمی اند،زیرا مبتنی بر اطلاعات ناکاملی هستند. در طول چندین دهه آمار فقط با بیان اطلاعات و مقادیر عددی در باره اقتصاد،جمعیت شناسی و اوضاع سیاسی حاکم در یک کشور سر و کار داشت .حتی امروز بسیاری از نشریات و گزارشهای دولتی که توده ای از آمارو ارقم را در بردارند معنی اولیه کلمه آمار را در ذهن زنده می کنند .اکثر افراد معمولی هنوز این تصویر غلط را در باره آمار دارند که آن را منحصر به ستونهای عددی سرگیجه آور و گاهی یک سری شکلهای مبهوت کننده می دانند .بنابر این یادآوری این نکته ضروری است که نظریه و روشهای جدید آماری از حد ساختن جدولهای اعداد و نمودارها بسیار فراتر رفته اند. آمار به عنوان یک موضوع علمی،امروزه شامل مفاهیم و روشهایی است که در تمام پژوهشهایی که مستلزم جمع آوری داده ها به وسیله یک فرایند آزمایش و مشاهده و انجام استنباط و نتیجه گیری به وسیله تجزیه و تحلیل این داده ها هستند اهمیت بسیار دارند.

علم آمار

علم آمار، خود مبتنی است بر نظریه آمار که شاخه‌ای از ریاضیات کاربردی به حساب می‌آید. در نظریهٔ آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریهء احتمالات مدل‌سازی می‌شوند. در این علم، مطالعه و قضاوت معقول در بارهٔ موضوع‌های گوناگون، بر مبنای یک جمع انجام می‌شود و قضاوت در مورد یک فرد خاص، اصلاً مطرح نیست.از جملهٔ مهم‌ترین اهداف آمار، می‌توان تولید «بهترین» اطّلاعات از داده‌های موجود و سپس استخراج دانش از آن اطّلاعات را ذکر کرد. به همین سبب است که برخی از منابع، آمار را شاخه‌ای از نظریه تصمیم‌ها (Decision theory) به شمار می‌آورند. این علم به بخش‌های آمار توصیفی و آمار استنباطی تقسیم می‌شود.

عمل آماری

شامل برنامه‌ریزی و جمع‌بندی و تفسیر مشاهدات غیر قطعی است به‌شکلی که :

·                                 اعداد نمایندهٔ واقعی مشاهدات بوده، غیر واقعی یا غلط نباشند.

·                                 به‌نحو مفیدی تهیه و تنظیم شوند.

·                                 به‌نحو صحیح تحلیل شوند.

·                                 قابل نتیجه‌گیری صحیح باشند.

روش‌های آماری

مطالعات تجربی و مشاهداتی هدف کلی برای یک پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه گیری روی تأثیر تغییرات در ارزش شاخص‌ها یا متغیرهای غیر وابسته روی یک پاسخ یا متغیر وابسته است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد: مطالعات تجربی و مطالعات مشاهداتی. در هر دو نوع از این مطالعات، اثر تغییرات در یک متغیر (یا متغیرهای) غیر وابسته روی رفتار متغیرهای وابسته مشاهده می‌شود. اختلاف بین این دو شیوه درچگونگی مطالعه‌ای است که عملاً هدایت می‌شود. یک مطالعه تجربی در بردارنده روش‌های اندازه گیری سیستم تحت مطالعه است که سیستم را تغییر می‌دهد و سپس با استفاده از روش مشابه اندازه گیری‌های اضافی انجام می‌دهد تا مشخص سازد که آیا تغییرات انجام شده، مقادیر شاخص‌ها را تغییر می‌دهد یا خیر. در مقابل یک مطالعه نظری، مداخلات تجربی را در بر نمی‌گیرد. در عوض داده‌ها جمع آوری می‌شوند و روابط بین پیش بینی‌ها و جواب بررسی می‌شوند.یک نمونه از مطالعه تجربی، مطالعات Hawthorne مشهور است که تلاش کرد تا تغییرات در محیط کار را در کمپانی الکتریک غربی Howthorne بیازماید. محققان علاقه مند بودند که آیا افزایش نور می‌تواند کارایی را در کارگران خط تولید افزایش دهد. محققان ابتدا کارایی را در کارخانه اندازه گیری کردند و سپس میزان نور را در یک قسمت از کارخانه تغییر دادند تا مشاهده کنند که آیا تغییر در نور می‌تواند کارایی را تغییر دهد. به واسطه خطا در اقدامات تجربی، به ویژه فقدان یک گروه کنترل محققاتی در حالی که قادر نبودند آنچه را که طراحی کرده بودند، انجام دهند قادر شدند تا محیط را با شیوه Hawthorne آماده سازند. یک نمونه از مطالعه مشاهداتی، مطالعه ایست که رابطه بین سیگار کشیدن و سرطان ریه را بررسی می‌کند. این نوع از مطالعه به طور اختصاصی از شیوه‌ای استفاده می‌کند تا مشاهدات مورد علاقه را جمع آوری کند و سپس تجزیه و تحلیل آماری انجام دهد. در این مورد، محققان مشاهدات افراد سیگاری و غیر سیگاری را جمع آوری می‌کنند و سپس به تعداد موارد سرطان ریه در هر دو گروه توجه می‌کنند.

احتمالات

در زبان محاوره، احتمال یکی از چندین واژه اي است که برای دانسته یا پیشامدهای غیر مطمئن به کار می‌رود و کم و بیش با واژه‌هایی مانند ریسک، خطرناک، نامطمئن، مشکوک و بسته به متن قابل معاوضه است. شانس، بخت، امتیاز و شرط بندی از لغات دیگری هستند که نشان دهنده برداشت‌های مشابهی هستند. همانگونه که نظریه مکانیک به تعاریف دقیق ریاضی از عبارات متداولی مثل کار و نیرو می‌پردازد، نظریه احتمالات نیز تلاش دارد تا مفاهیم و برداشت‌های مربوط به احتمالات را کمّی سازی کند.

نرم‌افزارها

آمار مدرن برای انجام بعضی از محاسبات خیلی پیچیده و بزرگ به وسیله رایانه ها استفاده می‌شود. کل شاخه‌های آمار با استفاده از محاسبات کامپیوتری انجام‌پذیر شده اند، برای مثال شبکه‌های عصبی. انقلاب کامپیوتری با یک توجه نو به آمار «آزمایشی» و «شناختیک» رویکردهایی برای آینده آمار داشته است.یکی از مهم‌ترین کاربردهای آمار و احتمال با استفاده از رایانه شبیه سازی است .شبیه سازی نسخه‌ای از بعضی وسایل حقیقی یا موقعیت‌های کاری است. شبیه سازی تلاش دارد تا بعضی جنبه‌های رفتاری یک سیستم فیزیکی یا انتزاعی را به وسیله رفتار سیستم دیگری نمایش دهد. شبیه سازی در بسیاری از متون شامل مدل سازی سیستم‌های طبیعی و سیتم‌های انسانی استفاده می‌شود. برای به دست آوردن بینش نسبت به کارکرد این سیستم‌ها در تکنولوژی و مهندسی ایمنی که هدف، آزمون بعضی سناریوهای عملی در دنیای واقعی است از شبیه سازی استفاده می‌شود. در شبیه سازی با استفاده از یک شبیه ساز یا وسیله دیگری در یک موقعیت ساختگی می‌توان آثار واقعی بعضی شرایط احتمالی را بازسازی کرد.

1- شبیه سازی فیزیکی و متقابل (شبیه سازی فیزیکی، به شبیه سازی اطلاق می‌شود که در آن اشیای فیزیکی به جای شی واقعی جایگزین می‌شوند و این اجسام فیزیکی اغلب به این خاطر استفاده می‌شوند که کوچک‌تر و ارزان تر از شی یا سیستم حقیقی هستند. شبیه سازی متقابل (تعاملی) که شکل خاصی از شبیه سازی فیزیکی است و غالباً به انسان در شبیه سازی‌های حلقه‌ای اطلاق می‌شود یعنی شبیه سازی‌های فیزیکی که شامل انسان می‌شوند مثل مدل استفاده شده در شبیه ساز پرواز.)

2- شبیه سازی در آموزش (شبیه سازی اغلب در آموزش پرسنل شهری و نظامی استفاده می‌شود. معمولاً هنگامی رخ می‌دهد که استفاده از تجهیزات در دنیای واقعی از لحاظ هزینه کمرشکن یا بسیار خطرناک است تا بتوان به کارآموزان اجازه استفاده از آن‌ها را داده. در چنین موقعیت‌هایی کارآموزان وقت خود را با آموزش دروس ارزشمند در یک محیط واقعی «ایمن» می‌گذرانند. غالباً این اطمینان وجود دارد تا اجازه خطا را به کارآموزان در طی آموزش داد تا ارزیابی سیستم ایمنی– بحران صورت گیرد.)

شبیه سازی‌های آموزشی به طور خاص در یکی از چهار گروه زیر قرار می‌گیرند :

الف - شبیه سازی زنده (جایی که افراد واقعی از تجهیزات شبیه سازی شده (یا آدمک) در دنیای واقعی استفاده می‌کنند.)

ب - شبیه سازی مجازی (جایی که افراد واقعی از تجهیزات شبیه سازی شده در دنیای شبیه سازی شده (یا محیط واقعی) استفاده می‌کنند.) یا

ج - شبیه سازی ساختاری (جایی که افراد شبیه سازی شده از تجهیزات شبیه سازی شده در یک محیط شبیه سازی شده استفاده می‌کنند. اغلب به عنوان بازی جنگی نامیده می‌شود زیرا که شباهتهایی با بازی‌های جنگی رومیزی دارد که در آن‌ها بازیکنان، سربازان و تجهیزات را اطراف یک میز هدایت می‌کنند .)

د - شبیه سازی ایفای نقش (جایی که افراد واقعی نقش یک کار واقعی را بازی می‌کنند.)

3 - شبیه سازی‌های پزشکی (شبیه سازهای پزشکی به طور فزاینده‌ای در حال توسعه و کاربرد هستند تا روشهای درمانی و تشخیص و همچنین اصول پزشکی و تصمیم گیری به پرسنل بهداشتی آموزش داده شود. طیف شبیه سازها برای آموزش روش‌ها از پایه مثل خونگیری تا جراحی لاپاراسکوپی و مراقبت از بیمار دچار ضربه، وسیع و گسترده است. بسیاری از شبیه سازهای پزشکی دارای یک رایانه هستند که به یک ماکت پلاستیکی با آناتومی مشابه واقعی متصل است. در بعضی از آنها، ترسیم‌های کامپیوتری تمام اجزای قابل رؤیت را به دست می‌دهد و با دستکاری در دستگاه می‌توان جنبه‌های شبیه سازی شده کار را تولید کرد. بعضی از این دستگاه‌ها دارای شبیه سازهای گرافیکی رایانه‌ای برای تصویربرداری هستند مانند پرتو ایکس یا سایر تصاویر پزشکی. بعضی از شبیه سازهای بیمار، دارای یک مانکن انسان نما هستند که به داروهای تزریق شده واکنش می‌دهد و می‌توان آن را برای خلق صحنه‌های مشابه فوریت‌های پزشکی خطرناک برنامه ریزی کرد. بعضی از شبیه سازهای پزشکی از طریق شبکه اینترنت قابل گسترش هستند و با استفاده از جستجوگرهای استاندارد شبکه به تغییرات جواب می‌دهند. در حال حاضر، شبیه سازی‌ها به موارد غربال گری پایه محدود شده‌اند به نحوی که استفاده کنندگان از طریق وسایل امتیازدهی استاندارد با شبیه سازی در ارتباط هستند.)

4 - شبیه سازهای پرواز (یک شبیه ساز پرواز برای آموزش خلبانان روی زمین مورد استفاده قرار می‌گیرد. به خلبان اجازه داده می‌شود تا به هواپیمای شبیه سازی شده اش آسیب برساند بدون آن که خود دچار آسیب شود. شبیه سازهای پرواز اغلب برای آموزش خلبانان استفاه می‌شوند تا هواپیما را در موقعیت‌های بسیار خطرناک مثل زمین نشستن بدون داشتن موتور یا نقص کامل الکتریکی یا هیدرولیکی هدایت کنند. پیشرفته‌ترین شبیه سازها دارای سیستم بصری با کیفیت بالا و سیستم حرکت هیدرولیک هستند. کار با شبیه ساز به طور معمول نسبت به هواپیمای واقعی ارزان تر است.)

5 - شبیه سازی و بازی ها(هم چنین بسیاری از بازی‌های ویدئویی شبیه ساز هستند که به طور ارزان تر آماده سازی شده اند. بعضی اوقات از این‌ها به عنوان بازیهای شبیه سازی (sim) نامبرده می‌شود. چنین بازیهایی جنبه‌های گوناگون واقعی را شبیه سازی می‌کنند از اقتصاد گرفته تا وسایل هوانوردی مثل شبیه سازهای پرواز.)

6 - شبیه سازی مهندسی (شبیه سازی یک مشخصه مهم در سیستم‌های مهندسی است. برای مثال در مهندسی برق، از خطوط تأخیری استفاده می‌شود تا تأخیر تشدید شده و شیفت فاز ناشی از خط انتقال واقعی را شبیه سازی کنند. مشابهاً، از بارهای ظاهری می‌توان برای شبیه سازی مقاومت بدون شبیه سازی تشدید استفاده کرد و از این حالت در مواقعی استفاده می‌شود که تشدید ناخواسته باشد. یک شبیه ساز ممکن است تنها چند تا از کارکردهای واحد را شبیه سازی کند که در مقابل با عملی است که تقلید نامیده می‌شود. 7 - اغلب شبیه سازی‌های مهندسی مستلزم مدل سازی ریاضی و بررسی‌های کامپیوتری هستند. به هر حال موارد زیادی وجود دارد که مدل سازی ریاضی قابل اعتماد نیست. شبیه سازی مشکلات مکانیک سیالات اغلب مستلزم شبیه سازی‌های ریاضی و فیزیکی است. در این موارد، مدل‌های فیزیکی نیاز به شبیه سازی دینامیک دارند.)


8 - شبیه سازی کامپیوتری (شبیه سازی رایانه، جزو مفیدی برای بسیاری از سیستم‌های طبیعی در فیزیک، شیمی و زیست‌شناسی و نیز برای سیستم‌های انسانی در اقتصاد و علوم اجتماعی (جامعه‌شناسی کامپیوتری) و همچنین در مهندسی برای به دست آوردن بینش نسبت به عمل این سیستم‌ها شده است. یک نمونه خوب از سودمندی استفاده از رایانه‌ها در شبیه سازی را می‌توان در حیطه شبیه سازی ترافیک شبکه جستجو کرد. در چنین شبیه سازی‌هایی رفتار مدل هر شبیه سازی را مطابق با مجموعه پارامترهای اولیه منظور شده برای محیط تغییر خواهد داد.شبیه سازی‌های کامپیوتری] اغلب به این منظور به کار گرفته می‌شوند تا انسان از شبیه سازی‌های حلقه‌ای در امان باشد. به طور سنتی، مدل برداری رسمی سیستم‌ها از طریق یک مدل ریاضی بوده است به نحوی که تلاش در جهت یافتن راه حل تحلیلی برای مشکلات بوده است که پیش بینی رفتار سیستم را با استفاده از یک سری پارامترها و شرایط اولیه ممکن ساخته است. شبیه سازی کامپیوتری اغلب به عنوان یک ضمیمه یا جانشین برای سیستم‌های مدل سازی است که در آن‌ها راه حل‌های تحلیلی بسته ساده ممکن نیست. انواع مختلفی از شبیه سازی کامپیوتری وجود دارد که وجه مشترک همه آن‌ها در این است که تلاش می‌کند تا یک نمونه از برنامه‌ای برای یک مدل تولید کنند که در آن امکان محاسبه کامل تمام حالات ممکن مدل مشکل یا غیر ممکن است.)به طور رو به افزونی معمول شده است که نام انواع مختلفی از شبیه سازی شنیده می‌شود که به عنوان «محیط‌های صناعی» اطلاق می‌شوند. این عنوان اتخاذ شده است تا تعریف شبیه سازی عملاً به تمام دستاوردهای حاصل از رایانه تعمیم داده شود.


9 - شبیه سازی در علم رایانه (در برنامه نویسی کامپیوتری، یک شبیه ساز اغلب برای اجرای برنامه‌ای مورد استفاده قرار می‌گیرد که انجام آن برای رایانه با مقداری دشواری همراه است. برای مثال، شبیه سازها معمولاً برای رفع عیب یک ریزبرنامه استفاده می‌شوند. از آن جایی که کار کامپیوتر شبیه سازی شده است، تمام اطلاعات در مورد کار رایانه مستقیماً در دسترس برنامه دهنده است و سرعت و اجرای شبیه سازی را می‌توان تغییر داد. همچنین شبیه سازها برای تفسیر درخت‌های عیب یا تست کردن طراحی‌های منطقی VLSI قبل از ساخت مورد استفاده قرار می‌گیرند. در علم رایانه نظریه، عبارت شبیه سازی نشان دهنده یک رابطه بین سیستم‌های انتقال وضعیت است که این در مطالعه مفاهیم اجرایی سودمند است.)

10 - شبیه سازی در تعلیم و تربیت (شبیه سازی‌ها در تعلیم و تربیت گاهی مثل شبیه سازی‌های آموزشی هستند. آن‌ها روی وظایف خاص متمرکز می‌شوند. در گذشته از ویدئو برای معلمین و دانش آموزان استفاده می‌شود تا مشاهده کنند، مسائل را حل کنند و نقش بازی کنند؛ هرچند، یک استفاده جدید تر از شبیه سازی‌ها در تعلیم و تربیت شامل فیلم‌های انیمیشن است (ANV .(ANV‌ها نوعی فیلم ویدئویی کارتون مانند با داستان‌های تخیلی یا واقعی هستند که برای آموزش و یادگیری کلاس استفاده می‌شوند.ANV‌ها برای ارزیابی آگاهی، مهارت‌های حل مسئله و نظم بچه‌ها و معلمین قبل و حین اشتغال کارایی دارند.)

شکل دیگری از شبیه سازی در سال‌های اخیر با اقبال در آموزش بازرگانی مواجه شده است. شبیه سازی بازرگانی که دارای یک مدل پویا است که آزمون استراتژی‌های بازرگانی را در محیط فاقد خطر مهیا می‌سازد و محیط مساعدی برای مباحث مطالعه موارد ارائه می‌دهد.


واژگانی که درک مفهوم آن‌ها در علم آمار مهم است عبارت‌اند از :

·                                 جمعیت

·                                 نمونه

·                                 متغیّر

·                                 مقیاس‌های اندازه‌گیری :

o                                                        مقیاس اسمی

o                                                        مقیاس ترتیبی

o                                                        مقیاس فاصله‌ای

o                                                        مقیاس نسبتی

آمار رشته وسیعی از ریاضی است که راههای جمع آوری، خلاصه سازی و نتیجه گیری از داده‌ها را مطالعه می‌کند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیک و علوم اجتماعی گرفته تا انسان‌شناسی و همچنین تجارت، حکومت داری و صنعت کاربرد دارد.هنگامی که داده‌ها جمع آوری شدند چه از طریق یک روش نمونه برداری خاص یا به وسیله ثبت پاسخ‌ها در قبال رفتارها در یک مجموعه آزمایشی (طرح آزمایش) یا به وسیله مشاهده مکرر یک فرایند در طی زمان (سری‌های زمانی) خلاصه‌های گرافیکی یا عددی را می‌توان با استفاده از آمار توصیفی به دست آورد.الگوهای موجه در داده‌ها سازمان بندی می‌شوند تا نتیجه گیری در مورد جمعیت‌های بزرگ‌تر به دست آید که این کار با استفاده از آمار استنباطی صورت می‌گیرد و تصادفی بودن و عدم قاطعیت در مشاهدات را شناسایی می‌کند. این استنباط‌ها ممکن است به شکل جوابهای بله یا خیر به سؤالات باشد (آزمون فرض)، خصوصیات عددی را برآورد کند(تخمین)، پیش گویی مشاهدات آتی باشد، توصیف ارتباط‌ها باشد (همبستگی) و یا مدل سازی روابط باشد (رگرسیون).شبکه توصیف شده در بالا گاهی اوقات به عنوان آمار کاربردی اطلاق می‌شود. در مقابل، آمار ریاضی (یا ساده تر نظریه آماری) زیر رشته‌ای از ریاضی کاربردی است که از نظریه احتمال و آنالیز برای به کارگیری آمار برروی یک پایه نظریه محکم استفاده می‌کند.مراحل پایه برای انجام یک تجربه عبارت‌اند از : برنامه ریزی تحقیق شامل تعیین منابع اطلاعاتی، انتخاب موضوع تحقیق و ملاحظات اخلاقی برای تحقیق و روش پیشنهادی. طراحی آزمون شامل تمرکز روی مدل سیستم و تقابل متغیرهای مستقل و وابسته. خلاصه سازی از نتایج مشاهدات برای جامعیت بخشیدن به آنها با حذف نتایج (آمار توصیفی). رسیدن به اجماع در مورد آنچه مشاهدات درباره دنیایی که مشاهده می‌کنیم به ما می‌گویند (استنباط آماری). ثبت و ارائه نتایج مطالعه.

سطوح اندازه گیری

چهار نوع اندازه گیری یا مقیاس اندازه گیری در آمار استفاده می‌شود. چــهار نوع یا سطح اندازه گیری (ترتیبی، اسمی، بازه‌ای و نسبی) دارای درجات متفاوتی از سودمندی در بررسی‌های آماری دارند. اندازه گیری نسبی در حالی که هم یک مقدار صفر و فاصله بین اندازه‌های متفاوت تعریف می‌شود بیشترین انعطاف پذیری را در بین روش‌های آماری دارد که می‌تواند برای تحلیل داده‌ها استفاده شود. مقیاس تناوبی با داشتن فواصل معنی دار بین اندازه‌ها اما بدون داشتن میزان صفر معنی دار (مثل اندازه‌گیری بهره هوشی یا اندازه‌گیری دما در مقیاس سلسیوس) در تحقیقات آماری استفاده می‌شود. صفت آماری - هر ویژگی مربوط به هر واحد جامعه را یک صفت آماری یا به اختصار یک صفت برای آن واحد آماری است. اگر یک واحد آماری یک انسان باشد، گروه خون، وزن، میزان سواد، میزان درآمد، درجه حرارت بدن و تعدادخانوار هر کدام یک صفت آماری برای آن واحد است. صفتهای آماری دو دسته کلی هستند. 1- صفت مشخصه 2 صفت متغیر

پافنوتی وویچ چبیشف

چبیشف در ۱۶ ماه مه ۱۸۲۱ در "اکتاوو"٬ روستایی کوچک در روسیه غربی٬ در غرب مسکو متولد شد.هنگام تولد او پدرش از ارتش بازنشسته شده بود٬ اما اخیرآ در زندگی نظامی اش بعنوان افسر مقابل نیروهای متجاوز ناپلئون جنگیده بود. چبیشف در خانواده ای کوچک که جزئی از خانواده ای بزرگ با تاریخچه ای جالب توجه به دنیا آمد.والدین اش ۹ فرزند داشتند که برخی از آنها شغل پدرشان را پیش گرفتند.
تحصیلات ابتدایی او در خانه شکل گرفت . وی در منزل توانایی های اولیه خواندن٬ زبان فرانسه و حساب را یاد گرفت.بعدها زبان فرانسه برای او بسیار سودمند بود چون توانست با تکیه بر آن فرانسه را از نزدیک ببیند و ریاضیات پیچیده را به فرانسوی در همانجا بخواند. همین طور زبان فرانسوی بین ریاضیدانان پیشرو اروپایی زبان ارتباطی مؤثری بود.
در سال ۱۸۳۲ وقتی یازده ساله بود٬ خانواده اش به مسکو رفتند.در آنجا او درس خواندن را در خانه ادامه داد ولی در آن زمان توسط پی.ان.پاگورلسکی- کسی که به بهترین مدارس ابتدایی آموزش ریاضیات در مسکو رسیدگی می کرد- در ریاضیات آموزش داده می شد. پاگورلسکی نویسنده بعضی از مشهورترین کتب درسی ریاضی مدارس ابتدایی در آن زمان و به طور قطع ریاضیات را به دانش آموزان القا می کرد و به آنها آموزش قوی ای از ریاضیات می داد.بنابراین٬ چبیشف خیلی خوب برای درس خواندن در علوم ریاضیات آماده شد وقتی که در سال ۱۸۳۷ به دانشگاه مسکو- این دانشگاه در سال ۱۷۵۵تأسیس شد- رفت.
در دانشگاه مسکو کسی که تأثیر زیادی بر چبیشف گذاشت "نیکولای مترویوچ برشمن"- پروفسور ریاضیات کاربردی در دانشگاه مسکو از سال ۱۸۳۴- بود. چبیشف همیشه به تأثیر بزرگ برشمن بر خود هنگام تحصیل در دانشگاه اعتراف می کرد و او را مهمترین عامل در رسیدن به نتایج تحقیقاتش عنوان می کرد.
دپارتمان فیزیک و ریاضی در دانشگاه او در سال تحصیلی ۴۱-۱۸۴۰ یک مسابقه برگزار کرد و چبیشف در مقاله ای (y=f(x را با استفاده از بسط سری ها برای توابع معکوس پذیر حل کرد ولی مقاله او در آن زمان تنها جایزه دوم را به خود اختصاص داد و در سال ۱۹۵۰ منتشر شد. چبیشف در سال ۱۸۴۱ فارغ التحصیل شد و تحصیلات خود را در فوق لیسانس تحت حمایت استاد محبوبش "برشمن" ادامه داد. 
اولین مقاله او به زبان فرانسه٬در رابطه با انتگرالهای چندگانه ٬در سال۱۸۴۳ درمجله "liouvill" منتشر شد. دومین مقاله او نیز به زبان فرانسه بود و این بار در سال ۱۸۴۴ در مجله "crelle" به چاپ رسید. این مقاله در رابطه با همگرایی سری تیلور بود.
در تابستان ۱۸۴۶ چبیشف در حال رسیدگی به رساله دکترای خود بود و در همان سال مقاله ای در مجله crelle بر پایه رساله خود منتشر کرد. رساله او در زمینه تئوری احتمال بود و در آن نتایج حاصل از تئوری احتمال را توسعه داد ولی با روشی ابتدایی.ناگفته نماند که رساله چبیشف تا پس از مرگ او به چاپ نرسید ولی او مقاله ای در رابطه با نتایج آن را در سال ۱۸۵۳ به چاپ رساند.
او همچنین در زمینه تئوری اعداد نیز مقالاتی به چاپ رسانده است.از جمله کارهای ناتمام او نزدیک شدن به اثبات قضیه اعداد اول است.اثبات اینکه اگر (p(n تعداد اعداد اول کوچکتر یا مساوی n باشد در این صورت حد p(n)logn/n وقتی n به سمت بی نهایت میل می کند برابر ۱ خواهد بود.او نمی توانست ثابت کند که این حد برابر یک است در حالیکه این حد وجود دارد. اثبات این قضیه ۲ سال بعد از مرگ او مستقلآ توسط "هدمرد" و "de la Vallee" ارائه شد.
همان طور که قبلآگفته شد چبیشف تئوری احتمال را بیان کرد. در سال ۱۸۶۷ او مقاله ای در رابطه با مقدار میانی را که در آن از نابرابری Bienayme استفاده شده بود چاپ کرد. یکی از نتایج این کار او نابرابری ایست که امروزه به آن نابرابری چبیشف-بینیم گفته می شود. ۲۰ سال بهد چبیشف دو قضیه در رابطه با اختمال را منتشر کرد٬ یکی اساس بکاربردن تئوری احتمال در داده های آماری و دیگری عمومی کردن قضیه حد مرکزی دوموآور-لاپلاس.
و اما زندگی خصوصی او٬ او هرگز ازدواج نکرد و تنها در یک خانه بزرگ با ده اتاق زندگی می کرد و از نظر مالی بی نیاز بود. و سر انجام در ۸ دسامبر ۱۸۹۴ در سنت پترزبورگ در روسیه در گذشت.

2 نوشته شده در  سه شنبه 11 اسفند1383ساعت 22:42  توسط مریم کریمی |  /**/ 6 نظر

آندری آندرویچ مارکوف

مارکوف٬ فارغ التحصیل دانشگاه سنت پترزبورگ در سال ۱۸۷۸ بود. وی در سال ۱۸۸۶ مدرک پروفسوری خود را دریافت کرد. کارهای زودهنگام مارکوف در تئوری اعداد٬ آنالیز٬ حدود انتگرال ها٬ همگرایی سری ها٬ دنباله کسرها و ... بسیار اساسی بود.
بعد از سال ۱۹۰۰ ٬ مارکوف تحت تأثیر استاد خود چبیشف٬ از روش دنباله های کسرها در تئوری احتمالات استفاده کرد.وی هم چنین در مورد رشته های متغیرهای وابسته متقابل٬ مطالعاتی انجام داد.با این امید ثابت کردن قوانین حدی در احتمالات در حالات کلی آنها.او قضیه حد مرکزی را با در نظر گرفتن فرض های کامل آن٬ اثبات کرد.
مارکوف به دلیل مطالعاتش پیرامون زنجیرهای مارکوف که رشته هایی از متغیرهای تصادفی هستند٬ معروف است.در زنجیرهای مارکوف٬ متغیر بعدی توسط متغیر کنونی مشخص می شود ولی از راهی که تا کنون طی شده است مستقل است.
در سال ۱۹۲۳ "نوربرت واینر" اولین کسی بود که پیرامون یک سلسله از این مراحل مارکوف شروع به بحثی جدی کرد.اساس یک تئوری اصلی در سال ۱۹۳۰ توسط کولموگروف فراهم شد.
مارکوف به شاعری هم علاقه مند بود و پیرامون ساختار شعری مطالعاتی انجام داد.جالب اینکه کولموگروف هم٬ چنین علایقی داشت.مارکوف پسری به اسم خودش داشت که در ۹ سپتامبر ۱۹۰۳ به دنیا آمد و راه پدرش را ادامه داد. 

2 نوشته شده در  سه شنبه 11 اسفند1383ساعت 17:16  توسط مریم کریمی |  /**/ نظر بدهید

پیشامدهای مرکب و اولیه

همان گونه که پیش از این اشاره کردیم،پیشامد مرکب از چند پیشامد اولیه تشکیل شده است.هنگامی که برای نخستین بار این تعاریف ارائه شدند،بیشتر آن دسته از پیشامدهای مرکب مورد نظر بودند که پیشامدهای اولیهء آنها دو به دو با هم اشتراک نداشتند.این نوع پیشامدهای اولیه را که امکان وقوع همزمان آنها وجود ندارد،ناسازگار مینامند و احتمال وقوع همزمان آنها صفر در نظر گرفته میشود.

برای مثال حالت زیر را در نظر میگیریم:

پشت یک دسته پنجاه و دو تایی کارتهای بازی اعداد یک تا پنجاه و دو را مینویسیم.حال یک کارت را به تصادف از بین آنها انتخاب میکنیم.پیشامد آمدن اعداد اول فرد یا آمدن مضارب دو یک پیشامد مرکب است که پیشامدهای اولیهء آن عبارتند از:پیشامد آمدن اعداد اول فرد و پیشامد آمدن مضارب عدد دو.میبینیم که این دو پیشامد اولیه ناسازگارند،پس احتمال وقوع پیشامد مرکب فوق برابر است با حاصل جمع پیشامدهای اولیهء سازندهء آن.

اما سؤال این است که اگر بین پیشامدهای اولیه،پیشامد های سازگار هم وجود داشته باشند،مسئله به چه صورتی در خواهد آمد؟

برای جواب دادن به این سؤال همان مسئلهء بالا را در نظر میگیریم.با این تفاوت که پیشامد مرکب را به صورت زیر تغییر میدهیم:

پیشامد آمدن عددی اول یا آمدن اعداد مضارب دو(عددی زوج).

در این حالت پیشامدهای اولیه با یکدیگر اشترک دارند.زیرا عدد دو،هم اول است و هم زوج.در مسئلهء اخیر،احتمال وقوع پیشامد مرکب برابر است با حاصل جمع احتمال های وقوع هر یک از پیشامدهای اولیه که از آن احتمال وقوع همزمان پیشامدهای اولیه کم شده است.(در این مسئله احتمال آمدن عدد دو.)

این مطالب با استفاده از اصل شمول و عدم شمول نتیجه میشوند و در حالت های کلی تر که با تعداد بیشتری از پیشامدهای اولیه مواجهیم نیز صادق اند.

 

2 نوشته شده در  چهارشنبه 5 اسفند1383ساعت 19:2  توسط مریم کریمی |  /**/ نظر بدهید

گذار از احتمالات کلاسیک

اوایل تئوری احتمالات به یک تعداد متناهی از نتایج یک امتحان دو شقی محدود شده بود.قانون محاسبهء احتمال،در اصل بسیار ساده بود:

یک پیشامد مرکب،تعدادی پیشامد اولیه را شامل میشود.احتمال آن پیشامد مرکب برابر است با حاصل جمع احتمالات آن پیشامدهای اولیه.برای تعیین احتمالهای پیشامدهای مرکب،پیشامدهای اولیه باید احتمالهایی داشته باشند.طرح های تخمینی بر اساس پیشامدهای اولیهء متقارن بنیان نهاده شده بودند.در نتیجه اگر تعداد پیشامدهای اولیه m بود،احتمال وقوع هر یک  میشد.تقارن نتایج یک بازی به معنی زیبا بودن آن بازی بود.

محاسبات کلاسیک احتمالات که بسیار محدود بودند،بر پایهء تفسیر کلاسیک احتمال انجام میشدند:

*فرض میشود که تعداد متناهی از نمونه های ممکن وجود داشته باشند.آنها هم امکان نامیده میشوند و به همین دلیل هم احتمال،اگر هیچ دلیلی وجود نداشته باشد که گمان کنیم وقوع یکی از آنها،بیشتر از دیگری امکانپذیر است.(قانون لاپلاس پیرامون عدم وجود دلایل کافی،مبحث عدم تفاوت)*

ادامه دارد...

-ترجمه شده توسط حامد ولیزاده و مریم کریمی

 

2 نوشته شده در  سه شنبه 20 بهمن1383ساعت 13:53  توسط مریم کریمی |  /**/ 3 نظر

قرن بیستم و تکامل نظریهء احتمال

در قرن نوزدهم ریاضیدانهای روسی"پافنوتی چبیشف"(۱۸۹۴-۱۸۲۱)"آندری مارکوف"(۱۹۲۲-۱۸۵۶)و"الکساندر لیاپانوف"(۱۹۱۸-۱۸۵۷)کارهای لاپلاس،دوموآور و برنولی به صورت قابل ملاحظه ای پیش بردند.                                  

دراوایل قرن بیستم احتمال به صورت نظریه ای پیشرفته توسعه یافت،اما مبنای محکمی نداشت.

هدف اساسی،قرار دادن آن بر پایه های محکم ریاضی بود.تا آن زمان در میان دیگر تعبیرات،تعبیر فراوانی نسبی احتمال رضایت بخش ترین تعبیر بود.بر اساس این تعبیر،برای تعریف احتمال وقوع یک پیشامد،دنباله ای از نتایج آزمایشهای تصادفی را در نظر میگیریم و مشاهده میکنیم که نسبت تعداد دفعاتی که در آن آزمایشها پیشامد مورد نظر رخ میدهد،به سمت مقدار معینی میل میکند.

از نظر ریاضی این تعریف با مشکلاتی مواجه است و نمیتواند مبنای دقیق نظریهء احتمال باشد.بعضی از مشکلات حاصل از چنین تعریفی عبارتند از:

یک:تکرار یک آزمایش تا بینهایت بار،عملاً غیر ممکن است.به علاوه اگر برای تعداد آزمایشهای زیاد(و نه بینهایت)تقریبی برای احتمال در نظر بیریم،راهی برای تحلیل خطا نداریم.

دو:دلیلی وجود ندارد بپذیریم که در صورت در نظر گرفتن بینهایت آزمایش،حدی که احتمال وقوع پیشامد را بیان میکند وجود داشته باشد.همچنین اگر وجود این حد را به عنوان یک اصل موضوع بپذیریم،دوگانگی هایی در برهان ها پیش می آیند که قابل حل نیستند.مثلاً دلیلی وجود ندارد که قبول کنیم برای یک پیشامد معین،در یک سری مختلف از آزمایشها، این نسبت به حد مشترکی میل میکند.(دلیلی نیست که احتمال پیشامد،یکتا باشد.)

سه:با این تعریف احتمال هایی که بر پایهء شناختها و باورهای شخصی استوارند،قابل توجیه نیستند.مثلاً گزاره هایی مانند:"احتمال اینکه قیمت نفت در شش ماه آینده افزایش پیدا کند شصت درصد است"یا "احتمال اینکه کریسمس آینده برف ببارد سی درصد است" بی معنی اند.

ادامه دارد...

2 نوشته شده در  جمعه 16 بهمن1383ساعت 18:24  توسط مریم کریمی |  /**/ یک نظر

احتمال در قرن هجدهم و نوزدهم(سیر کاربردی)

در امر بیمه در قرن هجدهم گامهای بلندی برداشته شد و عده ای از ریاضیدانان به نظریهءاحتمالاتی که در پس آن نهفته بود جلب شدند.
در نتیجه،علاقه به تلاش برای کاربرد احتمالات در زمینه های جدید ایجاد شد.در این راستا "ژرژ لویی لکلرک"،"کنت دوبوفرن"(۱۷۰۷-۱۷۸۸)که به خاطر اثر مطبوع ۳۶ جلدی اش دربارهء تاریخ طبیعی شهرت داشت،در سال ۱۷۷۷ اولین مثال از احتمال هندسی را ارائه داده که "مسئلهءسوزن"مشهور او برای تقریب تجربی عدد پی بود.برای کاربرد نظریهء احتمالات در موارد داوری انسان نظیر محاسبهء شانس اینکه محاکمه ای در صورت اختصاص دادن عددی به هر یک از اعضای هیئت منصفه که معرف میزان شانس سخن گفتن به نفع حقیقت یا درک حقیقت وی است،به رای صحیحی دست یابد،نیز تلاشهایی به عمل آمد.این احتمال ذاوری در همنوایی با فلسفهء روشنگری،در کار "آنتون نیکولا کارینا"،"مارکی دو کندورسه"که با وجود هواداری از انقلاب فرانسه یکی از روشنفکرانی بود که قربانی بداقبالی ناشی از زیاده رویهای بعد از انقلاب شد،اهمیت اساسی داشت.یکی از کندورسه به آن رسیده بود این بود که حکم هعدام باید لغو شود؛زیرا احتمال صحت یک تصمیم هر اندازه که بزرگ باشد بسیار محتمل خواهد بود که طی یک سلسله تصمیمات،شخص بیگناهی به غلط محکوم شود.
بعد از دوموآور در قرن هجدهم مطالعات ریاضیدانهای بزرگ نظیر"پیر سیمون لاپلاس"(۱۷۴۹-۱۸۲۷)،"سیمون دنیس پواسون"(۱۸۴۰-۱۷۸۱) و "کارل فردریش گاوس"(۱۸۸۵-۱۷۷۷)آغازی برای رشد سریع احتمال و کاربردهای مختلف آن شد.

                                            

و اما سیر تئوری...

2 نوشته شده در  چهارشنبه 14 بهمن1383ساعت 15:22  توسط مریم کریمی |  /**/ نظر بدهید

هويگنس

نابغهءبزرگ هلندي،"كريستيان هويگنس"،زندگي بي حادثه ولي بسيار پرباري داشت.وي در سال ۱۶۲۹ در لاهه متولد شد و در ليدن نزد "وان سمنتون"(پسر) درس خواند.در سال ۱۶۵۱ وقتي۲۲ سال داشت مقاله اي به چاپ رساند كه در آن اشتباهات "سن ونسان" را در اثرش دربارهء تربيع دايره گوشزد كرد.
همچنانكه گفتيم "هويگنس" در سال ۱۶۵۷ اولين رسالهء صوري دربارهء احتمال را بر مبناي مكاتبات پاسكال-فرما نگاشت.هويگنس مسائل جالب و غير مقدماتي بسياري را حل كرد و مفهوم "اميد رياضي" را معرفي كرد.
اگرPاحتمال آن باشد كه شخصي برندهء مبلغ معين Sشود،در اين صورتSPاميد رياضي آن خواهد بود.
هويگنس از جمله نشان داد كه اگرPاحتمال برد مبلغي برابر a،qاحتمال برد مبلغي برابر bبراي كسي باشد،آنگاه وي ميتواند اميد برد aP+bqرا داشته باشد.
پاسكال در كتاب "انديشه ها،يا تفكراتي در مذهب و ساير موضوعات" كه هشت سال پس از مرگش چاپ شد،به طور موجه نمايي مفهوم اميد رياضي را به كار گرفت.
وي استدلال كرد كه چون ارزش سعادت ابدي بايد نامتناهي باشد،در اين صورت حتي اگر احتمال اينكه تضمين سعادت از راه مذهب بسيار كوچك باشد،اميد(كه با حاصل ضرب اين دو به دست مي آيد)كافي ست تا مذهبي بودن را ارزشمند كند!
هويگنس در شهر زادگاه خود در ۱۶۹۵در گذشت.

2 نوشته شده در  سه شنبه 13 بهمن1383ساعت 10:32  توسط مریم کریمی |  /**/ نظر بدهید

پاسکال

بلز پاسکال در ۱۶۲۳ در ایالت فرانسوی اوورنی متولد شد و خیلی زود توانایی شگفت‌انگیزی در ریاضیات از خود نشان داد.داستانهای چندی از دستاوردهای دوران جوانی او را خواهرش ژیلبرتا که بعدها خانم پریه شد نقل کرده است.به علت ضعف جسمی ، پسر را در خانه نگه داشتند تا از تحلیل بنیه‌اش جلوگیری کنند.پدر بر آن شد که تحصیلات فرزندش در بدو امر به مطالعه زبان محدود شود و شامل ریاضیات نباشد.حذف ریاضیات از مطالعات او کنجکاوی پسر را برانگیخت و وی از معلم سرخانه خود درباره ماهیت هندسه استفسار کرد.معلمش به او گفت که هندسه ، مطالعه اشکال دقیق و خواص اجزای مختلف آنهاست.توصیف معلمش از هندسه و دستور پدرش در نهی آن باعث تهییج او شده از وقت بازی‌اش دست کشید و پنهانی ، در عرض چند هفته پیش خود بسیاری از خواص اشکال هندسی و به ویژه این حقیقت را که مجموع زوایای مثلث یک نیم صفحه است را کشف کرد.
پاسکال در هجده یا نوزده سالگی اولین ماشین حساب را اختراع کرد و اختراع آن بدان لحاظ بود که پدرش را در ممیزی حسابهای دولتی در روئن یاری نماید.
فعالیتهای اعجاب‌آور پاسکال در سال ۱۶۵۰ ناگهان قطع شد.در این سال پاسکال که از ضعف جسمانی در رنج بود تصمیم گرفت از تحقیقات خود در ریاضیات و علم دست بردارد و خود را وقف تأملات مذهبی نماید ، ولی سال بعد به مدت کوتاهی به عالم ریاضیات بازگشت.در این دوران مقاله مثلث حسابی خود را نوشت ، آزمایشات متعددی درباره فشار مایعات به عمل آورد و مکاتبه به فرما وی را در پی‌ریزی شالوده‌های نظریه ریاضی احتمالات یاری کرد ، اما در اواخر سال ۱۶۵۴ آنچه را که وی به دیده یک ندای باطنی شدید مبنی بر ناخشنودی خداوند از تجدید فعالیتهایش بدان می‌نگریست دریافت کرد.این ندای غیبی زمانی به او رسید که اسبهای رم کرده کالسکه حامل وی با دیواره پلی در نویی تصادم کردند و خود او فقط به دلیل پاره شدن معجزه‌آسای تسمه‌ها نجات یافت.

2 نوشته شده در  شنبه 10 بهمن1383ساعت 22:2  توسط مریم کریمی |  /**/ یک نظر

مقدمه(بخش آخر)

بخش سوم و چهارم 

2 نوشته شده در  چهارشنبه 7 بهمن1383ساعت 21:31  توسط مریم کریمی |  /**/ 2 نظر

مقدمه(بخش دوم)

اما ظهور احتمال به صورت یک نظریه ریاضی نسبتاً جدید است.
مصریان قدیم در حدود ۳۵۰۰ سال قبل از میلاد برای بازی از چیزی که امروزه آن را "قاپ" می‌نامند و شیئی استخوانی شبیه تاس چهار وجهی است استفاده می‌کردندکه در استخوان زانوی پای بعضی از حیوانات وجود دارد.
تاس شش وجهی معمولی در حدود سالهای ۱۶۰۰ بعد از میلاد ساخته شد و از آن به بعد در تمام انواع بازیها ابزار اصلی بوده است.
دست ورق معمولی بازی که احتمالاً متداولترین وسیله برای بازی و قمار به حساب می‌آید خیلی جدیدتر از تاس است.هر چند معلوم نیست که کی و از کجا منشأ گرفته است ، اما دلایلی وجود دارند که معلوم می‌کنند که دست ورق بین قرنهای هفتم و دهم در چین پیدا شده است.
بدیهی است که ضمن انجام بازیهای تصادفی ، قمار بازها درباره فراوانی وقوع پیشامدهای معین و درباره احتمال آنها ایده‌های شهودی به دست آوردند اما تعجب اینکه تا قرن پانزدهم هیچگونه بررسی علمی در مورد پیشامدهای تصادفی انجام نشد.

                                        

2 نوشته شده در  چهارشنبه 7 بهمن1383ساعت 21:21  توسط مریم کریمی |  /**/ 2 نظر


 

نوشته شده توسط علیرضا پاک گوهر  | لینک ثابت |
منبع

اخبار تکنولوژی - اسکریپت - گنج یاب - فلزیاب - انجمن تخصصی وبمستران - دانلود موزیک - جستجوگر فارسی - فلزیاب گنج یاب - اسکریپت فارسی - دانلود اسکریپت - قالب وردپرس - افزونه وردپرس - تبلیغ در اینترنت - امید صمدبین